3x^2+30x+1=0

Simple and best practice solution for 3x^2+30x+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+30x+1=0 equation:


Simplifying
3x2 + 30x + 1 = 0

Reorder the terms:
1 + 30x + 3x2 = 0

Solving
1 + 30x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
0.3333333333 + 10x + x2 = 0

Move the constant term to the right:

Add '-0.3333333333' to each side of the equation.
0.3333333333 + 10x + -0.3333333333 + x2 = 0 + -0.3333333333

Reorder the terms:
0.3333333333 + -0.3333333333 + 10x + x2 = 0 + -0.3333333333

Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000
0.0000000000 + 10x + x2 = 0 + -0.3333333333
10x + x2 = 0 + -0.3333333333

Combine like terms: 0 + -0.3333333333 = -0.3333333333
10x + x2 = -0.3333333333

The x term is 10x.  Take half its coefficient (5).
Square it (25) and add it to both sides.

Add '25' to each side of the equation.
10x + 25 + x2 = -0.3333333333 + 25

Reorder the terms:
25 + 10x + x2 = -0.3333333333 + 25

Combine like terms: -0.3333333333 + 25 = 24.6666666667
25 + 10x + x2 = 24.6666666667

Factor a perfect square on the left side:
(x + 5)(x + 5) = 24.6666666667

Calculate the square root of the right side: 4.966554809

Break this problem into two subproblems by setting 
(x + 5) equal to 4.966554809 and -4.966554809.

Subproblem 1

x + 5 = 4.966554809 Simplifying x + 5 = 4.966554809 Reorder the terms: 5 + x = 4.966554809 Solving 5 + x = 4.966554809 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + x = 4.966554809 + -5 Combine like terms: 5 + -5 = 0 0 + x = 4.966554809 + -5 x = 4.966554809 + -5 Combine like terms: 4.966554809 + -5 = -0.033445191 x = -0.033445191 Simplifying x = -0.033445191

Subproblem 2

x + 5 = -4.966554809 Simplifying x + 5 = -4.966554809 Reorder the terms: 5 + x = -4.966554809 Solving 5 + x = -4.966554809 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + x = -4.966554809 + -5 Combine like terms: 5 + -5 = 0 0 + x = -4.966554809 + -5 x = -4.966554809 + -5 Combine like terms: -4.966554809 + -5 = -9.966554809 x = -9.966554809 Simplifying x = -9.966554809

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.033445191, -9.966554809}

See similar equations:

| -3x+2=-8+-2x | | (x-12)+(2x+15)=90 | | -3x+2=-8+-3x | | .25x=.08x-1 | | cos(x)=-.19 | | 4x+3y+7z=-13 | | 9x^2+-x^2-3x^2= | | x+103=180 | | 2x+2x-28x+49=0 | | 3p^2-13p+12=-3p | | x+(4x+5)=90 | | 2x-18-3x=22 | | 9c-6c-2c+3d= | | 2x^2+16x-70=0 | | 5x(x+6)=3 | | -13=5x+7 | | 2xln*x+x-1=0 | | 11a+7b-3d= | | .75(r+.44)=2.75 | | 55+(x-45)=90 | | 5*(r+4)=d | | (8-6x)/3 | | (x+8)+(3x)=180 | | 9u/9 | | 3(9y-36)=-9 | | y=38.50-1.5x | | 39-15x=9y | | 5(8x+10)=37 | | 6=3(2x-6) | | 11-3n=32 | | x+(x+3)+(x-33)=150 | | -4n+10=-14 |

Equations solver categories